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ABSTRACT

We propose a methodology to quantitatively compare the rela-
tive performance of tracking evaluation measures. The proposed
methodology is based on determining the probabilistic agreement
between tracking result decisions made by measures and those made
by humans. We use tracking results on publicly available datasets
with different target types and varying challenges, and collect the
judgments of 90 skilled, semi-skilled and unskilled human subjects
using a web-based performance assessment test. The analysis of the
agreements allows us to highlight the variation in performance of
the different measures and the most appropriate ones for the various
stages of tracking performance evaluation.

Index Terms— Video tracking, evaluation measures, subjective
assessment.

1. INTRODUCTION

Several performance evaluation measures have been introduced to
measure the quality of video tracking results [1–6]. These evalua-
tion measures, in turn, need to be assessed to understand their rel-
ative performance. Discrepancy-based empirical measures evaluate
performance by quantifying the deviation of tracking results from a
ground truth over time at frame level [7] or at sequence level [8].
The measures may evaluate tracking performance based, for exam-
ple, on the extent of spatial match between the tracked region and
the ground-truth target region over time. The spatial match may be
determined in the form of the number of common pixels [7] or co-
incidence between the tracked and ground-truth regions [1]. Coinci-
dence is defined as the existence of the centroid of one region within
the other region.

While efforts have been made to empirically assess measures in
other research areas, including information retrieval [9], data cluster-
ing [10] and image compression [11], to the best of our knowledge
no attempt has yet been made at a direct quantitative assessment of
measures in the area of video tracking. The comparison of measures
was indirectly performed by considering the performance of algo-
rithms [12] and by studying the inter-measure correlation [13] with-
out explicitly analyzing the performance of the measures. Moreover,
a previous study [14] analyzed the agreement among the ground-
truth labelings (for different tasks including tracking) by humans to
examine the possible variations in their annotations without aiming
at assessing the measures.

In this paper we propose a methodology for the quantitative as-
sessment of discrepancy-based evaluation measures with respect to
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Fig. 1. Empirical assessment of measures with respect to human
judgement. T1 and T2 are tested on video clip (Vi) with initializa-
tion (Ii). S1

ij and S2
ij are performance scores computed using the

measure j by evaluating X1
i and X2

i , the estimated trajectories of T1

and T2 on Vi, with respect to ground-truth trajectory X̄i. Rij is the
decision of the measure j based on S1

ij and S2
ij . R̂il is the deci-

sion of the human subject l: l = 1, . . . , N , based on X1
i and X2

i

while also using the available ground-truth samples, X̄sam
i . P (Bi

j)
denotes the amount of agreement on Vi between Rij and the set of
human judgements, {R̂il}Nl=1.

human judgement. The comparison and analysis are based on deter-
mining the probabilistic agreement between the decisions made by
measures and those made by humans on tracking results (Fig. 1). We
assess seven measures on tracking results generated on ten publicly
available datasets with three target types (head, full body, vehicle).

This paper is organized as follows. Sec. 2 formulates the prob-
lem and explains the statistical significance test used in the analysis.
Sec. 3 describes the assessed evaluation measures. Sec. 4 describes
the subjective evaluation procedure with respect to which the mea-
sures will be assessed in Sec. 5. Conclusions are drawn in Sec. 6.

2. PRELIMINARIES

2.1. Problem formulation

Let us consider two trackers, T1 and T2, run on the ith video clip,
Vi : i = 1, ...,M , with target initialization, Ii. The trackers generate
the respective trajectories, X1

i and X2
i , in each clip i. X1

i and X2
i are a

sequence of states over frames: X1
i ={X1

ik}
K1

i
k=1, where X1

ik is the es-
timated state of T1 at frame k of Vi, and K1

i is the number of frames
where X1

i exists. X1
ik may contain information about the target posi-

tion (x1
ik, y

1
ik) and the occupied region A1

ik: X1
ik={(x1

ik, y
1
ik), A

1
ik}.

Let X̄i, X̄ik, K̄i, (x̂ik, ŷik) and Âik represent the corresponding
ground-truth of the quantities defined above. X1

i and X2
i are evalu-

ated with respect to X̄i using one out of J measures (j = 1, ..., J)
to obtain their evaluation scores, S1

ij and S2
ij , respectively.

Based on the comparison between S1
ij and S2

ij we define the
rank Rij as: Rij=(1, 2) if S1

ij is better than S2
ij ; Rij=(2, 1) if S2

ij is
better than S1

ij ; or Rij=(1.5, 1.5) if S1
ij=S2

ij . Rij=(1.5, 1.5) defines
a tie between T1 and T2 [15]. Similarly, let R̂il be the judgement
(decision) of the lth human subject (s.t. l = 1, ..., N ) in ranking X1

i



and X2
i . R̂il is defined as Rij , where j in Rij is replaced by l.

2.2. Statistical significance test

This section discusses the statistical significance test to check the
intra-subject agreement. To test the statistical significance for de-
cisions of a sample of judges (subjects), we define two hypotheses,
the null hypothesis (H0) and alternate hypothesis (Ha), which are
defined as follows. H0: a set of judges cannot distinguish the perfor-
mance of two trackers on a video; Ha: a set of judges can distinguish
the performance of two trackers on a video.

We aim to statistically check whether Ha is valid by rejecting
H0 according to a level of significance, ↵, which indicates the prob-
ability of rejecting a true null hypothesis and is often set to 0.05 [15].
We choose a test that can be applied for ranked data and account for
ties, namely the Friedman’s Two-Way ANOVA test (the Friedman’s
test) [15]. The Friedman’s test, �2, for a video is computed as

�2 =
12

NF (F + 1)

FX

f=1

 
NX

l=1

R̂il(f)

!2

� 3N(F + 1), (1)

where N is the number of judges, R̂il(f) is the rank assigned to
tracker Tf on Vi by subject l such that f={1, 2} because we con-
sider a pair of trackers (F=2). To test the statistical significance
at ↵=0.05, the �2 value is compared to the value corresponding to
F -1 degrees of freedom in the �2 table of critical values [15] that is
equal to 3.841. If �2 > 3.841, the statistical significance is achieved
and H0 is rejected. �2 2 [0, N ]. Let us consider an example with
N = 50: if R̂il = (1, 2) for 50% of the subjects and R̂il = (2, 1)
for the remaing subjects, �2 = 0; if R̂il = (1, 2) for 62% of the
subjects and R̂il = (2, 1) for the remaining subjects, �2 = 2.880;
if R̂il = (1, 2) for 63% of the subjects and R̂il = (2, 1) for the
remaining subjects, �2 = 3.920; if R̂il = (1, 2) for 75% of the
subjects and R̂il = (2, 1) for the remaining subjects, �2 = 13.520;
if R̂il = (1, 2) for 75% of the subjects and R̂il = (1.5, 1.5) for the
remaining subjects, �2 = 28.880; if R̂il = (1, 2) for 100% of the
subjects, �2 = 50.

3. MEASURES

We consider the following state-of-the-art evaluation measures:
Mean Overlap (O) [16], Precision (P̂ ), Track Detection Rate
(TDR) [1], Area Under lost-track ratio Curve (AUC�) [5], Com-
bined Tracking Performance Score (CoTPS) [6], Tracking Success
Probability (TSP) [7] and Mean Dice (MD) vs. Correct Track Ratio
(CTR) curve [8]. AUC� and CoTPS quantify performance based
on the lost-track ratio. TSP, MD-vs-CTR and P̂ need presetting of
parameters, whereas TDR, AUC�, CoTPS and O do not require
presetting of parameters. All the measures are bounded in [0, 1]. We
use the symbol (") to indicate that the higher the score, the better
the result, whereas (#) indicates that the lower the score, the better
the result.

Mean Overlap: The overlap, Ok ("), between Âik and Aik is
defined as Ok= |Âik\Aik|

|Âik[Aik|
. The Mean Overlap (O) is computed as

the average of Ok across the frames where the target exists.
Precision, P̂ ("), is defined as P̂= |TP |

|TP |+|FP | , where |TP | and
|FP | are the number of true and false positives across the sequence,
respectively. An estimation is a true positive if the overlap Ok � ⌧3
and a false positive if Ok < ⌧3. We use ⌧3 = 0.25 for head targets
and ⌧3 = 0.50 for person and vehicle targets as done in [17].
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Fig. 2. Ability of the measures to distinguish different tracking re-
sults. (a) Normalized discrepancy in the evaluation scores of each
measure for the tracking pair on each clip, V1, . . . , V10. (b) Evalua-
tion scores computed using measures for 20 toy trajectories.

The Track Detection Rate, TDR ("), is defined as ratio of the
number of true positive coincidences (|TC|) across X1

i or X2
i and the

number of ground-truth points across X̄i, (K̄i), i.e. TDR = |TC|
K̄i

. A
true positive coincidence occurs when the ground-truth position of a
target in a frame coincides with the estimated target area.

The Area under lost-track ratio curve, AUC� (#), is defined as
AUC�=�⌧2

P1
⌧2=0 �(⌧2) and quantifies the tracking performance

based on the area under the lost-track ratio curve, �(⌧2), which rep-
resents the percentage of lost tracks for a given threshold ⌧2. A track
is considered lost in a frame if Ok < ⌧2. �(⌧2) is generated for a
variation of ⌧2 with an increment of �⌧2.

The Combined Tracking Performance Score, CoTSP (#), is com-
puted as CoTPS=�⌦ + (1 � �)�0, where � is a weighting factor
computed adaptively and is proportional to the number of frames
with Ok > 0. The tracking accuracy ⌦ is computed similarly to
AUC�, but using only the frames with Ok > 0. The tracking fail-
ure, �0, is the percentage of failed frames (Ok = 0).

The Tracking Success Probability, TSPk ("), is defined at frame
k as: TSPk= exp(⌫·a(Âik,Aik))

1+exp(⌫·a(Âik,Aik))
, where a(Âik, Aik) quantifies the

overlap between Âik and Aik [18]. We use the mean TSP score
(TSP) across the trajectory and the fixed parameter ⌫=11.8 [7].

Mean Dice vs. Correct Track Ratio curve, MD-vs-CTR ("). Let
the Dice score Dk be defined as Dk= 2|Âik\Aik|

|Âik|+|Aik|
, where 0Dk1.

The Correct Track Ratio (CTR) is the percentage of frames where
Dk is greater than a threshold. Mean Dice (MD) is the average of
the Dk scores that are greater than this threshold. The MD-vs-CTR
curve plots MD against CTR, computed for the full range of possible
thresholds. To quantify the tracking performance we use the CTR
value corresponding to MD of at least 0.7, i.e. min{MD}MD�0.7,
denoted as CTR0.7. A Dice score � 0.7 is considered to be a satis-
factory tracking result [8]; the threshold of 0.7 is used for CTR0.7,
thus showing the long-term tracking ability as the percentage of the
sequence where the target is tracked with MD of at least 70%.

We are interested in analyzing the ability of measures to distin-
guish (slightly) different tracking results. Fig. 2(a) shows the nor-



Table 1. Summary of the dataset. Key: FS: Frame Size; K: number
of frames in Vi; t: duration of the clip.

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

Clemson head tracking SPEVI PETS2000 AVSS2007 PETS2010 CAVIAR
K 51 83 50 50 100 29 30 30 30 100

t (sec) 7 11 6 7 7 4 4 4 4 11
FS 96⇥128 96 ⇥ 128 96 ⇥ 128 96 ⇥ 128 576 ⇥ 720 240 ⇥ 320 576 ⇥ 768 576 ⇥ 720 576 ⇥ 768 288 ⇥ 384

Target Head Vehicle Person

malized discrepancy between evaluation scores of each measure for
tracker pairs on M video clips (where M=10 as discussed in Sec. 4),
which is the absolute difference between the evaluation scores of
tracker pairs computed using the measure divided by its range. O,
AUC� and CoTPS consistently distinguish tracker pairs on all clips
(normalized discrepancy > 0), whereas the remaining measures are
unable to distinguish results (i.e. normalized discrepancy=0) from
V5 to V9 as highlighted in Fig. 2(a), except P̂ that could distinguish
performance on V8 and V9.

We show the variation of the scores of the measures using 20 toy
trajectories, each having a constant overlap (for the whole sequence)
of 0.05, 0.10, . . . , 1, respectively. The overlap is as a(·) for TSP, as
Ok for AUC�, CoTPS and P̂ , and as Dk for CTR0.7. For TDR,
coincidence is achieved throughout a trajectory when Ok � 0.4 (i.e.
for trajectory 8 to trajectory 20). In Fig. 2(b) we can clearly see
two groups of measures. The first group includes (1-CoTPS), (1-
AUC�) and O, which can each discriminate the results throughout
overlap variations. The second group includes TSP, P̂ , CTR0.7 and
TDR, which are often not able to distinguish variations in results (as
highlighted in Fig. 2(b)) due to the hard decisions caused by their
preset thresholds on the overlap or coincidence.

4. SUBJECTIVE EVALUATION

We use ten test videos (V1 to V10) with different target types (head,
vehicle, person), challenges (scale change, pose change, occlusion,
clutter) and scenarios (indoor, outdoor). The video clips are from
publicly available datasets including AVSS 2007 challenge [19],
CAVIAR [20], Clemson head tracking [21], PETS 2000 [22], PETS
2010 [23], SPEVI [24] (Tab. 1, Fig. 3). As trackers we use the
mean-shift tracker [25], a particle filter-based tracker [26], the
fragments-based tracker [27], the online boosting tracker [28], the
semi-supervised online boosting tracker [29] and the beyond semi-

(a) V1 (b) V2 (c) V3 (d) V4

(e) V5 (f) V6 (g) V7 (h) V8

(i) V9 (j) V10

Fig. 3. Visualization of the first frame of video clips with targets
indicated in green bounding boxes. Datasets: (a-d) Clemson head
tracking, (e-f) SPEVI, (g) PETS 2000, (h) AVSS 2007 challenge, (i)
PETS 2010 and (j) CAVIAR.
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Fig. 4. Statistical significance using the Friedman test (�2) on each
Vi for the skilled, semi-skilled and unskilled (subject) samples. The
red line indicates the critical value corresponding to the standard sig-
nificance level, ↵ = 0.05.

supervised boosting tracker [30].
We asked subjects to rank the results of tracker pairs (X1

i ,X
2
i )

on all Vi. For each Vi, the tracking results are shown with X1
i and

X2
i superimposed as a sequence of bounding boxes over time. Three

samples of subjects are distinguished as skilled, semi-skilled and un-
skilled in target tracking. N1, N2 and N3 denote the size of the
skilled, semi-skilled and unskilled samples (N1 = N2 = N3 = 30).
None of the subjects was involved in this work [14].

The subjective evaluation tests were performed using a web-
site [31] that, after providing the instructions, shows the tracking
results of tracker pairs (T1, T2) side-by-side. The gray color of the
background (red=green=blue=130) of the webpage follows the rec-
ommendation by ITU for relaxing human eyes [32]. For each clip
the ground-truth tracking samples are also provided as a reference
for the first, middle and last frames. We show short clips to help
subjects remember the tracking results, thereby aiming to minimize
the uncertainty in their judgment. The clips are played in a loop
and can be viewed multiple times. Each subject chooses the tracker,
‘Left’ or ‘Right’, which is deemed to be the best or chooses ‘Same’
if the result of each tracker in the pair appears indistinguishable.

We perform the Friedman’s test on each Vi for skilled (N=N1),
semi-skilled (N=N2) and unskilled (N=N3) samples separately
(Sec. 2.2). Fig. 4 shows the results for the statistical significance: for
skilled and unskilled subjects the statistical significance is achieved
for all Vi except for V6; for semi-skilled subjects the statistical sig-
nificance is achieved for all Vi except for V2 and V6. The reason
for the statistical insignificance on V6 is that the subjects could not
distinguish tracking results (Fig. 5(a)). In fact, the results in V6 seem
comparable (Fig. 6(f)).
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Fig. 5. Decision (ranking) for each video sequence (Vi). The rank-
ing between the tracker pair (T1, T2) given on each Vi by (a) (most
of) the skilled, semi-skilled and unskilled subjects, (b) the evaluation
measures. ‘T1’, ‘T2’ and ‘Same’ on the vertical axis show T1 con-
sidered the best, T2 considered the best and both trackers considered
the same, respectively.
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Fig. 6. Amount of overlap (common pixels), Ok, between estimated and ground-truth results for T1 and T2 on V1 (a) to V10 (j).

5. MEASURE-SUBJECT AGREEMENT

We devise a probabilistic criterion for computing the measure-
subject agreement. Let us consider a set of events of a sample of
subjects (skilled, semi-skilled or unskilled) in a probability space
for each Vi, which is defined as follows: Ei={Ei

1, E
i
2, E

i
3} : Ei

1=
{T1(Vi) � T2(Vi)}; Ei

2= {T2(Vi) � T1(Vi)}; Ei
3= {T1(Vi) ⌘

T2(Vi)}. T1(Vi) is the result of tracker T1 on Vi; the symbol �
indicates preference and the symbol ⌘ means that two results are
indistinguishable.

We can compute the probability of each event occurring as
P (Ei

r)=
n
Ei

r
n
Ei

1
+n

Ei
2
+n

Ei
3

8r = 1, 2, 3, where nEi
r

denotes the num-

ber of times Ei
r occurs for each Vi and for each sample. We find

the probability, P (Bj), of the jth measure (Bi
j has the same prob-

ability space as Ei
r) by calculating the total probabilities for M

independent sets of events computed from each sample of subjects:
P (Bj)= 1

M

PM
i=1

P3
r=1 P (Bi

j |Ei
r)P (Ei

r), where M is the normal-
ization factor. We use P (Bj) to quantify the agreement between the
jth measure and each sample of subjects (i.e. skilled, semi-skilled
and unskilled) (Tab. 2).

The measures with the overall highest agreement with the three
subject samples are P̂ and TSP (Tab. 2). AUC� and O also con-
sistently achieve high P (Bj). CoTPS has a lower P (Bj) due to an
inappropriate decision on V3 (Fig. 5(b)). CTR0.7 and TDR show the
lowest P (Bj) for the three subject samples. Moreover, each mea-
sure has the highest P (Bj) for skilled subjects followed by unskilled
and semi-skilled subjects.

CoTPS, AUC� and O are mostly in agreement (Fig. 5(b)) and
can capture slight changes in tracking results even when humans
show uncertainty in distinguishing them. The ability to capture these
changes is useful in accurately ranking the tracking results. For ex-
ample, these three measures can distinguish the trackers on V6 by

Table 2. Assessment in terms of the measure agreement (P (Bj))
with the skilled, semi-skilled and unskilled subject samples. The
brighter the cell, the better (higher) the agreement.

Measure TSP P̂ CTR0.7 CoTPS AUC� O TDR
Skilled 0.74 0.74 0.58 0.61 0.71 0.71 0.58

Semi-skilled 0.68 0.67 0.52 0.57 0.66 0.66 0.52
Unskilled 0.70 0.71 0.53 0.61 0.70 0.70 0.53

judging T2 as better (Fig. 5(b)), despite the fact that the majority
of skilled (97%), semi-skilled (90%) and unskilled (90%) subjects
judge them indistinguishable. A limitation in CoTPS can be seen
on V3 where T1 is judged to be better than T2, which is opposite to
the judgement of the remaining measures and subjects as well. This
limitation is due to the non-linear (quadratic) behavior of CoTPS
due to its failure term, �0 = 1� �. TSP and P̂ are mostly in agree-
ment (Fig. 5(b)) and also with respect to subjects (Tab. 2). TSP and
P̂ indeed penalize bad tracking results and poorly discriminate be-
tween good results (Fig. 2(b)). TDR and CTR0.7 have the lowest
agreement (P (Bj)) with subjects and have a limited ability to dis-
tinguish tracking results. Fig. 5(b) shows that 50% of video clips
are judged ‘Same’ and this does not correspond to the judgment of
subjects (Fig. 5(a)). Additionally, the smallest P (Bj) of TDR indi-
cates that tracking evaluation based on the coincidence criterion is
not reflecting human judgment.

Overall, P̂ and TSP generally show the highest agreement with
human judgment, whereas CoTPS, AUC� and O have a better abil-
ity to distinguish similar tracking results. This confirms that a two-
stage procedure for the evaluation and comparison of trackers is de-
sirable [33]. First P̂ should be used to group trackers in performance
classes, where each class contains trackers with comparable results.
Next the evaluation should be further refined within each class using,
for example, O.

6. CONCLUSIONS

We proposed a methodology to empirically assess tracking measures
based on the law of total probability that quantifies the agreement be-
tween their decisions and those of human subjects in terms of rank-
ing trackers’ results. The results unveiled interesting aspects of the
assessed measures. While P̂ and TSP exhibit the highest agreement
with humans, both have a limited ability to distinguish tracking re-
sults. CTR0.7 and TDR showed the lowest agreement. AUC� and
O are parameter independent, have a better ability to distinguish re-
sults and show a substantially higher agreement with humans (al-
though lower than P̂ and TSP). Moreover, we observed that P̂ and
O should be used jointly for a thorough performance evaluation and
comparison of trackers. Future work will involve assessing the reli-
ability and stability of the measures, and performing the analysis on
a larger video set.
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