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ABSTRACT
We present an end-to-end approach for trajectory clustering from
aerial videos that enables the extraction of motion patterns in urban
scenes. Camera motion is first compensated by mapping object tra-
jectories on a reference plane. Then clustering is performed based
on statistics from the Discrete Wavelet Transform coefficients ex-
tracted from the trajectories. Finally, motion patterns are identified
by distance minimization from the centroids of the trajectory clus-
ters. The experimental validation on four datasets shows the effec-
tiveness of the proposed approach in extracting trajectory clusters.
We also make available two new real-world aerial video datasets to-
gether with the estimated object trajectories and ground-truth cluster
labeling.

Index Terms— Aerial videos, trajectory clustering, motion pat-
terns, trajectory features.

1. INTRODUCTION

The extraction of motion patterns corresponding to the movement of
people and vehicles in a scene can support behavior prediction [1],
abnormality detection [2,3] and tracking [4]. Motion patterns can be
extracted by analyzing motion information between frame pairs [5–
7] or by analyzing motion information across multiple frames (ob-
ject trajectories) [8–12]. The former category of approaches is suit-
able for extracting short-range patterns, whereas the latter category
helps extracting long-range patterns when the trajectory information
is available [7,12]. Trajectory-based methods generally rely on clus-
tering spatio-temporal features [8–11] or frequency-domain features
such as DFT coefficients [12, 13]. Hu et al. [8] presented a hier-
archical trajectory clustering framework that separated the trajecto-
ries of vehicles and persons and then subclusters trajectories of each
category to extract motion patterns. Anjum and Cavallaro [9] in-
troduced a framework that performed trajectory clustering and then
fused clusters obtained with different features to identify patterns.
Wang et al. [14] proposed a method to learn motion patterns using
the Dual Hierarchical Dirichlet Processes (Dual-HDP). The authors
in [14] built on the Dual-HDP model introducing a Dynamic Dual-
HDP model in [11] that enabled updating motion patterns dynami-
cally. Zhang et al. [10] applied trajectory clustering in a block-based
scene representation based on Gaussian Mixture Models (GMM) to
learn motion patterns. Recently, Hu et al. [12] proposed an incre-
mental trajectory clustering algorithm to learn motion patterns based
on Dirichlet Process Mixture Model (DPMM).

As most frameworks assume stationary cameras [1, 10, 12, 14,
15], an important challenge is extracting motion patterns from aerial
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videos as they require camera motion compensation. Methods exist
that cope with camera motion but are not aimed at motion pattern
extraction. These methods rely on the availability of Geo-spatial In-
formation System (GIS) information and perform geo-registration of
the aerial video to estimate depth cues for identifying buildings, trees
and roads [16] or to segment areas using motion-based foreground
segmentation without distinguishing motion patterns by registering
the input frames with a generated background mosaic [17].

This paper presents an end-to-end approach for trajectory clus-
tering for motion pattern extraction in aerial videos. The overall
method involves compensating camera motion in the estimated tra-
jectories and performing trajectory clustering to identify motion pat-
terns (Fig. 1). To perform clustering, we use a feature that encap-
sulates trajectory information using its Discrete Wavelet Transform
(DWT) coefficients. We demonstrate the effectiveness of the pro-
posed approach compared to the state of the art on four real-world
datasets. We also introduce two new real-world aerial datasets for
parking lot and traffic junction scenes, which are made available on-
line together with the estimated trajectories and ground-truth cluster
labeling at http://uav.lakeside-labs.com/publications/test-data.

This paper is organized as follows. Sec. 2 describes the cam-
era motion compensation in trajectories. Sec. 3 explains the feature
extraction and trajectory clustering. The experimental setup is pro-
vided in Sec. 4 and results in Sec. 5. Sec. 6 concludes the paper.

2. MOTION COMPENSATION

We aim to identify motion patterns produced by people and vehi-
cles in urban scenes using videos captured by UAVs equipped with
a top-down looking camera. Let X = {X

i

}I
i=1 be a set of trajecto-

ries X
i

of moving objects on the image plane obtained using a video
tracker, where I is the total number of trajectories. kS

i

and kE

i

de-
note the start and end frames for X

i

: X
i

= [Xk

i

]
k
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k=k
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, and K is the
total number of frames in the video sequence, V . The position of an
object at each frame k of V is defined as Xk

i

= [(xk

i

, yk

i

)], where
(xk

i

, yk

i

) are the coordinates of an object on the image plane.
We compensate the camera motion in the trajectories, X, based

on the homography computation under the assumption of planar ob-
ject motion and minimal perspective distortions, described as fol-
lows. We map all trajectories on a common frame, I

r

, selected from
the frames of V . The choice of I

r

is made so as to ensure that it over-
laps with the remaining frames. Given X

i

, Xk

i

is to be mapped on
I
r

by computing a homography, H
k,r

, between I
k

and I
r

. To this
end we use the standard feature-based alignment method [18] that
involves extracting point features in I

k

and I
r

, determining point
correspondences and computing H

k,r

with the best correspondences
obtained by applying RANSAC. We employ the widely-used SIFT
point features [19]. RANSAC reduces the errors (caused due to the
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Fig. 1. Proposed pipeline - V : video sequence; I: tracker initializa-
tion set; X: trajectory set; X

i

: trajectory i; X̂: compensated trajec-
tory set; f

i

: feature vector; C, M: set of clusters and motion patterns.

presence of non-planar SIFT matches and mismatches) in the ho-
mography computation and hence in the compensated trajectories.

Although alternative approaches to homograhy-based camera
motion compensation [20, 21] are suitable for segment-long [21]
or sequence-long [20] optical flow-advected dense trajectories (be-
longing both to background and foreground), they are not directly
applicable to object trajectories that can have variable lengths and
different kS

i

and kE

i

.
After the computation of the homography matrix, (xk

i

, yk

i

) can
be mapped onto I

r

as:
⇥
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where (x̂k

i

, ŷk

i

) are the corresponding coordinates of Xk

i

in I
r

ob-
tained by dividing the left-hand-side of equation by w. Similarly, all
the positions in X

i

can be mapped onto I
r

to get the corresponding
compensated trajectory, X̂

i

. In this way, all X
i

are transformed onto
I
r

to obtain X̂ = {X̂
i

}I
i=1, the set of compensated trajectories on

I
r

(Fig. 2).

3. FEATURE EXTRACTION AND CLUSTERING

We first encode the time-varying information of the trajectories X̂ =
{X̂

i

}I
i=1 for clustering. Then we apply a trajectory-clustering pro-

cedure to X̂ thus yielding a set of clusters C = {C
n

}N̄
n=1. Each

cluster, C
n

, is used to represent the corresponding motion pattern,
M

n

(i.e. each M
n

is a representative spatio-temporal trend of object
motion in the scene).

Feature extraction in the frequency domain is demonstrated to
be appropriate for trajectory clustering [12, 13, 22] using a set of
DFT or DWT coefficients. Due to the time localization, DWT can
better capture the changing frequency information along trajectories
and has a lower complexity (O(N)) than DFT (O(N log N)) [23],
where N is the number of points along the trajectory. DWT is also
used for trajectory retrieval by Sahouria and Zakhor [24].

We use Haar wavelets to capture local variations in trajectories
using the single-level implementation of Mallat’s algorithm [25] for
computing the DWT coefficients. Haar wavelets are also used in
the existing works [23, 24] and are reported to perform better than
Daubechies and Coiflet wavelets [23]. For a given trajectory X̂

i

,
we therefore compute the DWT (Haar wavelets) of the 1-D data,
x̂
i

(k) = {x̂k
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}k
E
i

k=k
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and ŷ
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(k) = {ŷk
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}k
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.
To build a feature vector, we use the computed approxima-

tion DWT coefficients of x̂
i

(k), Cx̂i , and ŷ
i

(k), Cŷi , to formulate
the DWT-based feature for X̂

i

as follows: f
i

= (fx̂i , fŷi), where
fx̂i = (min(Cx̂i),Qx̂i

25,Qx̂i
50,Qx̂i

75,max(Cx̂i)) encapsulates the non-
parametric statistics for the coefficients including the minimum
coefficient value, the first quartile or 25th percentile (Qx̂i

25), the
second quartile or 50th percentile (Qx̂i

50), the third quartile or 75th
percentile (Qx̂i

75), and the maximum coefficient value in Cx̂i . Like-
wise, fŷi = (min(Cŷi),Qŷi

25,Qŷi
50,Qŷi

75,max(Cŷi)). Instead of using
the first few coefficients [23, 24], f

i

captures the overall distribu-
tion of coefficients non parametrically in terms of fx̂i and fŷi , thus
providing a more comprehensive trajectory description.

Fig. 2. Motion-compensated trajectories overlaid on the image cre-
ated by registering frame 1 (I

r

) and frame 7729 of the Parking Lot
dataset (left) and by registering frame 13468 (I

r

) and frame 4785 of
the Traffic Junction dataset (right).

We perform clustering using the feature f
i

computed for each X̂
i

to extract a set C = {C
n

}N̄
n=1 of N̄ trajectory clusters, where C

n

de-
notes cluster n. We use the trajectory clustering algorithm proposed
in [9], which uses an incremental procedure to select the bandwidth
parameter in the Mean-Shift procedure and does not require the prior
knowledge of N̄ , the number of clusters. The bandwidth parameter
is initialized with 20% of the range of the feature space of f

i

. As
done in [9], trajectories in sparse clusters (i.e. whose cardinality is
smaller than 10% of the median cardinality of all the clusters) and
those with a normalized absolute distance from the centroid of the
corresponding dense clusters greater than ⌧1 = 0.95 are defined as
outlier trajectories. Unlike the method in [9], the proposed frame-
work uses a DWT-based feature space and addresses the challenge
of camera motion compensation in the trajectories.

Finally, a motion pattern M
n

is defined by the trajectory that
minimizes the distance from the centroid of cluster C

n

without con-
sidering the direction of motion. The minimization uses the trajec-
tory mean point and length (kE

i

� kS

i

) to capture the spatial location
and the elongation of the patterns. Examples of C

n

and M
n

are
shown in Fig. 3.

4. EXPERIMENTAL SETUP

We perform the experimental validation of the proposed framework
on four datasets (Tab. 1). The first two are a Parking Lot and a Traffic
Junction scene containing persons and vehicles. These sequences are
captured using an octocopter UAV (AscTec Falcon 8) at low altitudes
(⇡ 20 � 40 m). We extracted real trajectories, X, using the Mean-
Shift tracker [26] with manual initializations to track the moving
objects until they leave the scene. I denotes the set of initializations
for all targets.

The other two datasets are Students003 [27] and Train Sta-
tion [28] captured from a high viewpoint static camera (i.e. no need
for camera motion compensation). We use the provided ground-
truth trajectories for Students003 and the provided real trajectories
extracted using KLT tracker [29] for Train Station. Most of the
trajectories in Train Station are short-duration tracklets obtained by
repeated tracker initializiations and dealing with tracklets is out of
the scope of the proposed framework. We therefore use only the
longer trajectories (length, kE

i

�kS

i

> 600) in our experiments with
Train Station.

We compare the proposed methods with three alternative ap-
proaches, namely M1, M2 and M3. M1 uses a DFT-based feature
(fD
i

) [12,13] that represents a trajectory using the first five DFT coef-
ficients of x- and y- coordinates of X̂

i

. M2 uses as features the start
and end points of each trajectory, fSE

i

. To compare with fD
i

(fSE

i

),
f
i

is replaced with fD
i

(fSE

i

) in the proposed framework. M3 is the
method performing mean-shift trajectory clustering using multiple
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Fig. 3. Visualization of the results for the extracted clusters and motion patterns (color coded) for M1 (second row), M2 (third row), M3
(fourth row) and the proposed method (fifth row) to be compared with the ground truth (first row). The clusters are shown on planes along
z-axis in each plot. Motion patterns are superimposed on the original frame and shown in the lowest plane in each plot.

spatio-temporal feature spaces [9] applied on the compensated tra-
jectories.

The quantitative evaluation is done by computing the accuracy
of the learned clusters, A, and the precision (P ) and recall (R) of

the extracted motion patterns. The accuracy is computed as fol-
lows [12]: A = 1

N̄

P
N̄

n=1
bn
Bn

, where b
n

is the number of trajectories
with the same ground-truth cluster label and the highest proportion
in the learned cluster C

n

, and B
n

is the number of trajectories in C
n



Table 1. Characteristics of the dataset. Key - FS: frame size as
height ⇥ width (pixels); NF: number of frames; NT: no. of trajecto-
ries; CLT: combined length of all trajectories (frames); FPS: frames
per second.

Dataset FS NF NT CLT FPS
Parking Lot 1080⇥ 1920 9517 54 29483 30

Traffic Junction 540⇥ 960 16154 236 42311 30
Students003 576⇥ 720 5405 417 207304 25
Train Station 480⇥ 720 46009 762 557345 23

with N̄ denoting the number of learned clusters. The ground-truth
cluster labeling was done manually by multiple annotators for Park-
ing Lot and Traffic Junction, and by one annotator for Students003
and Train Station. P and R are computed using correct (true posi-
tive), incorrect (false positive) and missed (false negative) patterns.
A motion pattern is considered correct if it lies within a ground-truth
cluster. For a complete evaluation, P and R should be analyzed with
A since a correct pattern may have originated from an inaccurate
cluster. The average A, P and R are computed for five runs on each
dataset.

5. ANALYSIS OF THE RESULTS

In this section we present the evaluation of the proposed framework
in extracting trajectory clusters and patterns, its robustness and dis-
cuss its computational complexity.

We performed the evaluation and comparison qualitatively
(Fig. 3) and quantitatively (Tab. 2). The clusters generated using
the proposed feature, f

i

, are more accurate (highest A and highest
R). The highest A and R are however associated with a small P
on Traffic Junction, Students003 and Train Station due to false posi-
tives. Except for Parking Lot, M1 has the best P . M2 is the second
best in terms of A and R (its R is the same as for the proposed
method on Parking Lot).

As the performance of the pipeline can be affected by the pres-
ence of tracking failure-ridden trajectories, we induce tracking fail-
ures by selecting the first half of randomly selected p% trajectories in
each dataset, p = 0, 10, . . . , 50, and analyze its effect on A for M1,
M2, M3 and the proposed method (Tab. 3). In the evaluation of A
the tracking failure-ridden trajectories are removed from the ground
truth clusters as outliers. The results show that the proposed method
has the best mean A on all datasets except Train Station where it is
the second best to M2. In terms of variation of A, M1 is better due
to its smallest � on all datasets except Parking Lot. From the view-
point of UAV operations, the tracking failures may be caused as a
result of abrupt UAV movements leading to larger inter-frame target
displacement on the image plane (Fig. 4), which could be accounted
for in the tracking algorithm [30].

Finally, we consider the computational cost for the whole
pipeline. The computational effort used by the camera motion
compensation in trajectories is significantly greater than that for the

Table 2. Evaluation of the clustering and motion pattern extraction
for M1, M2, M3 and the proposed method in terms of A, P and
R.

Method Parking Lot Traffic Junction Students003 Train Station
A P R A P R A P R A P R

M1 .64 .48 .53 .67 .67 .27 .41 .90 .40 .32 .60 .18
M2 .72 .41 1 .82 .46 .40 .78 .74 .43 .80 .46 .36
M3 .56 .63 .33 .70 .40 .33 .51 .60 .28 .33 .35 .18

Proposed .89 .65 1 .88 .52 .50 .90 .58 .51 .82 .45 .50

Table 3. Effect of inducing tracking failures to p% randomly se-
lected trajectories on the clustering accuracy in terms of the mean
(µ) and standard deviation (�) of A for p = 0, 10, . . . , 50.

Method Parking Lot Traffic Junction Students003 Train Station
µ (�) µ (�) µ (�) µ (�)

M1 .45 (.18) .53 (.13) .29 (.10) .23 (.07)
M2 .57 (.13) .66 (.19) .66 (.21) .60 (.19)
M3 .41 (.20) .54 (.15) .37 (.13) .20 (.09)

Proposed .64 (.27) .67 (.19) .69 (.22) .52 (.22)

Fig. 4. Tracking results for inter-frame target displacements sim-
ulated by regularly dropping (m � 1) frames from the sequence:
m = 0, 2, 4, 6, 8 (blue, green, magenta, black, yellow) [32]. A track-
ing failure occurs for m = 8 (rightmost image).

other stages due to the need of calculating homography for each
frame where trajectories exist. The motion-compensation block is
seven orders of magnitude larger (for Parking Lot) and six orders of
magnitude larger (for Traffic Junction) than each of the remaining
stages. The higher computational effort for the motion compensa-
tion stage for the Parking Lot is due to its larger frame size (Tab. 1).
The major contributor in the computational effort of the motion
compensation stage is the computation of SIFT features due to the
combined computational complexity of its multiple steps [31].

6. CONCLUSIONS

We presented a pipeline for extracting trajectory clusters and motion
patterns from aerial videos of urban scenes. The pipeline involves
applying camera motion compensation to trajectories extracted in
the image plane and performing clustering using a feature that encap-
sulates trajectory information non-parametrically using DWT coeffi-
cients. We performed the experimental validation and comparison of
the framework on four datasets. The results showed the effectiveness
of the proposed method in identifying trajectory clusters and motion
patterns. Moreover, considering the scarcity of aerial datasets, we
also introduced two new real-world aerial datasets of urban scenes
and made them available online together with the estimated trajec-
tories and ground-truth cluster labeling. Future work could involve
reducing the computational effort of the compensation stage.
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