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Measures of effective video tracking
Tahir Nawaz, Fabio Poiesi, Andrea Cavallaro

Abstract—To evaluate multi-target video tracking results, one
needs to quantify the accuracy of the estimated target-size and the
cardinality error as well as measure the frequency of occurrence
of ID changes. In this paper we survey existing multi-target track-
ing performance scores and, after discussing their limitations, we
propose three parameter-independent measures for evaluating
multi-target video tracking. The measures take into account
target-size variations, combine accuracy and cardinality errors,
quantify long-term tracking accuracy at different accuracy levels,
and evaluate ID changes relative to the duration of the track
in which they occur. We conduct an extensive experimental
validation of the proposed measures by comparing them with
existing ones and by evaluating four state-of-the-art trackers on
challenging real-world publicly-available datasets. The software
implementing the proposed measures is made available online to
facilitate their use by the research community.

Index Terms—Multi-target video tracking, evaluation measure,
accuracy, cardinality error, ID changes.

I. INTRODUCTION

V IDEO tracking is a widely researched topic with ap-
plications in event detection, surveillance and behavior

analysis. These applications may involve simultaneous track-
ing of multiple moving targets using a point-target repre-
sentation (e.g. feature-point tracking) or an extended-target
representation (e.g. in face or person tracking) [1]–[6]. Point-
target representations use target position information, whereas
extended-target representations also include information about
the region covered by the target in the image plane [6],
[7]. A tracking error is generally quantified by computing
the discrepancy between estimated and ground-truth target
regions [8], [9] (Fig. 1). Ground-truth-free tracking evaluation
frameworks also exist that provide performance assessment by
enforcing constraints such as time reversibility [10], [11] and
feature consistency [12], [13] of the estimated tracks.

Unlike single-target tracking evaluation [9], [14], [15],
multi-target tracking evaluation requires solving the assign-
ment problem in order to establish associations between esti-
mated and ground-truth states [8], [16]–[19]. The association
may be determined using position only (point-based assign-
ment) or region information as well (region-based assign-
ment). Point-based assignment determines associations based
on distance minimization between estimated and ground-
truth tracks [16], [17]. Region-based assignment determines
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Fig. 1. Accuracy error for extended targets: overlap between estimated
(solid line) and corresponding ground-truth (dotted line) regions defined as
(a) bounding box, (b) bounding ellipse or (c) contour. Image from the iLids
Easy sequence [20].

associations based on the overlap between estimated and
ground-truth target regions [8], [18] or by establishing their
coincidence [19]. Coincidence means that the centroid of one
(e.g. estimated target) lies within the region of the other.
Finally, the assignment may be solved at frame level [4] or at
sequence level [16].

Three important aspects to be evaluated for multi-
target tracking are accuracy, cardinality and number of ID
changes [8], [16]. The accuracy quantifies the closeness of
agreement between estimated and ground-truth states [21],
and it can be calculated as an error score (i.e. distance [16],
overlap [8], [17]) (Fig. 1) or based on true positives (correct
estimations), false positives (incorrect estimations) and false
negatives (missed estimations) [7]. The cardinality error is
the difference between the number of estimated and ground-
truth targets. ID changes are the incorrect associations between
estimated and ground-truth targets.

Evaluation measures can be categorized into distance-
based [16], [22]–[24] and overlap-based measures [8], [9],
[17], [18]. Distance-based measures may not be suitable to
evaluate changes in target size [16], [23], [24] or their values
may not explicitly detect instances of tracking failure, which is
defined as a zero-overlap between estimated and corresponding
ground-truth states [22]–[24]. Overlap-based measures [8],
[9], [18] generally consider the estimated target-size variations
and can detect instances of tracking failure. Both distance-
based and overlap-based measures may need presetting of
parameters [8], [16]. For example, a cut-off parameter is
used to define an upper bound [16]. Then the number of
false positive (i.e. its spatial overlap with the ground truth
is insufficient) and false negative estimations (i.e. missed
estimation having spatial overlap with the ground truth to be
zero) is determined by comparing their spatial overlaps with a
pre-defined threshold [8]. Moreover, some existing measures
are numerically unbounded [8], [25] and not well defined for
the worst tracking case.

To address the above-mentioned limitations, we propose
three overlap-based measures for multiple extended-target
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video trackers that evaluate performance at frame level taking
into account (i) the accuracy and the cardinality errors; (ii)
long-term tracking accuracy using lost-track-ratio information;
and (iii) ID changes in a parameter-independent manner. We
provide an extensive experimental validation of the proposed
measures in terms of comparison with existing measures and
in the form of evaluation of four state-of-the-art multi-target
trackers on challenging real-world datasets. The software
implementation for the measures is made available online at
http://www.eecs.qmul.ac.uk/~andrea/mtte.html.

This paper is organized as follows. A detailed review of the
existing measures is presented in Sec. II. Sec. III describes the
proposed measures, followed by their experimental validation
in Sec. IV. Sec. V concludes the paper.

II. RELATED WORK: SURVEY

Discrepancy-based performance assessment operates at
frame level [16] or at sequence level by considering either
individual tracks [17] or all the tracks [8]. We can identify
three categories of multi-target tracking evaluation measures:
Point-based Assignment and Position-based (PAP) evaluation,
Region-based Assignment and Position-based (RAP) evalu-
ation, and Region-based Assignment and Size-based (RAS)
evaluation. These three categories are discussed after the
definition of the notation we will use in this paper.

A. Notation

Let Xk,j be the state of target j estimated by a tracker at
frame k and defined as

Xk,j = (xk,j , yk,j , Ak,j , lj), (1)

where (xk,j , yk,j) define the position of the target, Ak,j is its
region information on the image plane and lj is the target ID,
and k = 1, . . . ,K. K is the number of frames in the video
sequence. Ak,j may be represented in the form of a bounding
box [5], a bounding ellipse [6] or a bounding contour [26]. In
the case of point targets, the estimated state of the target j at
frame k does not contain Ak,j and it is denoted as X ′k,j . Xk
is the set of estimated states of multiple targets:

Xk = {Xk,1, . . . , Xk,j , . . . , Xk,uk}, (2)

where uk = |Xk| is the number of estimated targets at frame k
(i.e. the cardinality of Xk). The track Xj of target j is defined
as a sequence of states over time:

Xj = {Xk,j}
kjend
k=kjini

, (3)

where kjini and kjend denote the initial and final frame numbers
of Xj , respectively, and Kj is the number of frames spanned
by Xj . The set containing all the estimated tracks X in the
sequence is

X = {Xj}Uj=1, (4)

where U denotes the number of estimated tracks. Similarly,
X̄k,i, (x̄k,i, ȳk,i, Āk,i, l̄i), X̄k, vk, X̄ ′k,i, X̄i, k̄

i
ini, k̄

i
end, K̄i, X̄

and V are the corresponding ground-truth notations for Xk,i,
(xk,i, yk,i, Ak,i, li), Xk, uk, X ′k,j , Xj , k

j
ini, k

j
end, Kj , X and

U , respectively.
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Fig. 2. General procedure for the computation of the evaluation score S
for multiple extended-target tracking. Three different modalities are possible:
using a point-based solution for the assignment problem and for evaluation
(s1 = s2 = 1, s3 = s4 = 2); using a region-based solution for the
assignment problem and a point-based solution for evaluation (s1 = s2 =
2, s3 = s4 = 1); using a region-based solution for the assignment problem
and information about target position and size for evaluation (s1 = s2 =
2, s3 = s4 = 2).

B. PAP evaluation

PAP measures use a point-based assignment and evalu-
ate target position only, without considering temporal size-
changes (Fig. 2). Examples of PAP measures include Ob-
ject Tracking Error (OTE), the Wasserstein’s distance-based
metric, the Optimal Sub-Pattern Assignment (OSPA) metric,
Tracker Detection Rate (TRDR), False Alarm Rate (FAR),
Track Detection Rate (TDR) and Track Fragmentation (TF).

OTE [17] computes the average positional distance be-
tween ground-truth and estimated track pairs. The assignment
associates an estimated track with the ground-truth track
that minimizes the average Euclidean distance across their
common frames [22]. For each associated pair t, their OTEt
is calculated as

OTEt =
1

K̂t

k̂tend∑
k=k̂tini

√
(x̄k,t − xk,t)2 + (ȳk,t − yk,t)2, (5)

where K̂t = k̂tend − k̂tini is the number of frames that
are common in both ground-truth and estimated tracks and
k̂tini and k̂tend denote the initial and final frame numbers,
respectively, of the pair t.

The Wasserstein’s distance-based metric [25], Wp(X̄k,Xk),
computes the multi-target tracking accuracy as

Wp(X̄k,Xk) = min
C

 uk∑
j=1

vk∑
i=1

Ckj,id(X ′k,j , X̄
′
k,i)

p

1/p

, (6)

where d(·)p denotes the p-norm with p ∈ [1,∞), uk is the
number of estimated targets, vk is the number of ground-
truth targets, and C is the transportation matrix defining
the association costs among all possible pairs of estimated
and ground-truth tracks at frame k. The associations that
minimize the overall cost are determined using the Hungarian
or Munkres algorithms [27], [28].

The OSPA metric [16], [29] defines the tracking error as

Dp,c(X̄k,Xk) =

[
1

max(uk, vk)

(
min
π∈Πuk

vk∑
i=1(

Dc(X̄
′
k,i, X

′
k,π(i))

)p
+ |uk − vk| · cp

)]1/p
, (7)

where Πuk represents the set of permutations each contain-
ing vk elements taken from {1, 2, . . . , uk}, Dc(X̄

′, X ′) =
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min(c,D(X̄ ′, X ′)) is the cut-off distance between the two
states with c>0 representing the cut-off parameter and p ∈
[1,∞) is the order parameter of the OSPA-based metric.
D(X̄ ′, X ′) denotes the base distance that quantifies the dis-
crepancy between estimated and ground-truth states, and in-
cludes localization and labeling errors [16]:

D(X̄ ′, X ′) =
(
||X̄ ′ −X ′||p′ + αp

′
δ̄[l̄, l]

)1/p′

, (8)

where δ̄[l̄, l] is the complement of the Kronecker delta such
that δ̄[l̄, l] = 0 if l̄ = l and δ̄[l̄, l] = 1 if l̄ 6= l, and α ∈ [0, c]
is the penalty applied to the labeling error if the frame-
level assignment (determined as a result of the minimization
in Eq. 7) does not correspond to the global assignment of
tracks computed a priori. The global assignment is determined
based on the minimization of the average distance between
estimated and ground-truth tracks [16], [30]. p′ ∈ [1,∞)
denotes the order parameter of the base distance. Typically,
p = p′ = 1 [16]. Unlike OTE and the Wasserstein’s distance-
based metric, OSPA incorporates the cardinality error in the
evaluation procedure, which would be otherwise not be taken
into account by the minimization term of the distance error
in Eq. 7. In particular, when the assignment is performed, the
unassociated targets do not contribute to the accuracy error
term and the inclusion of the cardinality error accounts for
them. Additionally, the combination of the accuracy and the
cardinality error terms yields a single score that facilitates
performance comparisons.

TRDR, FAR and TDR [17] evaluate the accuracy using true
positives and false positives determined with the coincidence
criterion. Although these measures use target-size information
in the evaluation, they are PAP measures because they do
not evaluate target-size changes over time. For TRDR, FAR
and TDR, the assignment between estimated and ground-truth
tracks is solved as for OTE.

TRDR quantifies the overall performance at frame k as the
ratio of the number of correctly-tracked targets (true positives),
|T̂P k|, to the number of ground-truth targets vk:

TRDRk =
|T̂P k|
vk

. (9)

An estimation is considered a true positive if the centroid
of the ground-truth bounding box lies (coincides) within
the estimated bounding box. If no centroid of ground-truth
bounding boxes coincide with an estimated bounding box, the
estimation is considered a false positive.

FAR quantifies tracking performance at frame k as the ratio
of the number of incorrectly-tracked targets (false positives),
|F̂P k|, to the sum of correctly- and incorrectly-tracked targets,
|T̂P k|+ |F̂P k|:

FARk =
|F̂P k|

|T̂P k|+ |F̂P k|
. (10)

TDR quantifies the tracking performance at track level as
the ratio between the number of true positive targets in the
estimated track Xj , |T̂P j | and the number of frames where

the corresponding ground-truth track Xi exists, K̄i:

TDRi =
|T̂P j |
K̄i

. (11)

The evaluation of the consistency of the IDs of targets is
provided in the form of TF [17]:

TFi = |IDCi|, (12)

where |IDCi| is the number of ID changes with respect to
the ground-truth track i, measured as the number of times
a ground-truth track i is associated with different estimated
tracks. The association between estimated and ground-truth
tracks is determined as for OTE.

C. RAP evaluation

RAP measures use a region-based assignment and provide a
position-based evaluation. Examples of RAP measures include
T̂P track matches, F̂P track matches and F̂N track matches.

The computation of T̂P track matches, F̂P track matches
and F̂N track matches [19] is based on the spatial and tem-
poral overlaps between estimated and ground-truth tracks and
involves performing the assignment implicitly. If the estimated
track j overlaps any ground-truth track i both spatially and
temporally, the estimation is considered a T̂P track match.
A spatial overlap is achieved in a frame when the centroid
of the estimated track j coincides with the corresponding
bounding box of the ground-truth track i. At track level, it
is measured for each ground-truth track as the percentage
of frames having coincidence between estimated and ground-
truth bounding boxes. For a T̂P match, the temporal overlap,
Ōtp, between the estimated track j and the corresponding
ground-truth track i is defined as

Ōtp =
N ov
i,j

Ki
, (13)

where N ov
i,j is the number of concurrent frames between

ground-truth track i and estimated track j, i.e. the frames
where i and j exist. If the spatial or temporal overlap of the
estimated track j with any ground-truth track i is smaller than
a threshold τ2, the estimation is considered to be a F̂P track
match. For a F̂P match, the temporal overlap, Ōfp, between
the estimated track j and the corresponding ground-truth track
i is defined as

Ōfp =
N ov
i,j

Kj
. (14)

Given all estimated tracks, if the spatial or temporal overlap of
the ground-truth track i with any estimated track j is smaller
than a threshold τ̄2, the estimation is considered a F̂N match.
For a F̂N match, the temporal overlap Ōfn is computed as
for Ōtp (Eq. 13), i.e. Ōfn = Ōtp.

D. RAS evaluation

RAS measures use a region-based assignment and provide
tracking evaluation that also takes into account target-size
changes over time (size-based evaluation). Examples of RAS
measures include Correct Detected Track (CDT), False Alarm
Track (FAT), Track Detection Failure (TDF), Multiple Object
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Tracking Precision (MOTP), Multiple Object Detection Accu-
racy MODA, Normalized MODA, Multiple Object Tracking
Accuracy (MOTA) and ID changes (IDC).

CDT, FAT and TDF [18] are conceptually similar to T̂P ,
F̂P and F̂N tracks, respectively, as defined in [19]. However,
unlike [19], in which the spatial overlap is based on the
coincidence of bounding boxes, spatial overlap is defined using
the number of common pixels between estimated and ground-
truth bounding boxes. This implies that CDT, FAT and TDF
include also the variations of target sizes in the evaluation.
However, they do not individually evaluate the cardinality
error.

For MOTP, MODA, Normalized MODA and MOTA, a one-
to-one assignment is achieved at frame level between estimated
and ground-truth tracks based on the maximization of spatial
overlap values (computed as for CDT, FAT and TDF) between
pairs using the Hungarian algorithm [8], [27].

MOTP [8] is a spatio-temporal measure that computes the
amount of overlap between estimated and ground-truth tracks:

MOTP =

∑nm
t=1

∑k̂tend
k=k̂tini

|Ātk∩A
t
k|

|Ātk∪A
t
k|∑K

k=1 n
k
m

, (15)

where nm is the number of associated estimated and ground-
truth track pairs in the sequence, |Ātk ∩ Atk| is the number
of common pixels in Ātk and Atk, |Ātk ∪ Atk| is the number
of pixels in Ātk ∪ Atk, and nkm is the number of associated
estimated and ground-truth target pairs at frame k. The pairs
with an overlap greater than a fixed threshold value τo are
considered in the evaluation procedure.

MODAk [8] computes tracking performance at frame k
by combining the information about the number of false
negative estimations |F̂Nk| and the number of false positive
estimations |F̂P k|:

MODAk = 1− c1|F̂Nk|+ c2|F̂P k|
vk

, (16)

where c1 and c2 are fixed a priori. F̂P k and F̂Nk are deter-
mined by comparing the amount of overlap between estimated
and corresponding ground-truth targets with the threshold τo.
Note that MODA is not numerically lower bounded. For
example, let c1 = c2 = 1, |F̂Nk| = 2, |F̂P k| = 6 and vk = 6;
hence MODAk = −0.33. As |F̂Nk| and/or |F̂P k| increase,
MODAk keeps decreasing without lower bound (Fig. 3). A
sequence-level formulation of MODA, the Normalized MODA
(N-MODA) [8], is defined as

N-MODA = 1−
∑K
k=1(c1|F̂Nk|+ c2|F̂P k|)∑K

k=1 vk
. (17)

Unlike MODA, MOTA [8] is a sequence-level measure
that evaluates tracking performance by including also the
information about the number of ID switches (|IDSk|) in each
frame, in addition to |F̂Nk| and |F̂P k|. The contributions of
|F̂Nk|, |F̂P k| and |IDSk| are determined by manually setting
the corresponding three application-dependent parameters, c1,
c2 and c3, respectively. The contributions are accumulated

across the sequence and normalized as follows:

MOTA = 1−
∑K
k=1(c1|F̂Nk|+ c2|F̂P k|+ c3|IDSk|)∑K

k=1 vk
,

(18)
where F̂P k and F̂Nk are determined as in MODA and,
as with MODA, it is not numerically lower bounded. For
example, let c1 = c2 = c3 = 1 and k = 1, 2; at k = 1,
|F̂N1| = 0, |F̂P 1| = 2, |IDS1| = 0, v1 = 3; at k = 2,
|F̂N2| = 0, |F̂P 2| = 5, |IDS2| = 2, v2 = 3; hence,
MOTA = −0.50.

IDC [18] counts the number of ID changes corresponding
to all ground-truth tracks. At each frame, each estimated
bounding box is assigned to the ground-truth bounding box
with an overlap larger than a predefined threshold. When the
amount of overlap for an estimated track and ground-truth
track pair falls below the threshold, an ID change is considered
to have occurred.

E. Discussion

Table I compares the state-of-the-art multi-target tracking
evaluation measures. Existing frame-level measures do not
take into account the evaluation of target-size changes [16],
[17], [25] and require presetting application-dependent pa-
rameters [8], [16]. Additionally, frame-level measures ignore
the cardinality error [17], [25]. Sequence-level measures do
not evaluate target-size changes (e.g. OTE, TDR [17] and
the measures presented in [19]) and use application-dependent
thresholds (e.g. MOTA, MOTP [8] and the measures presented
in [18]). These measures aim to evaluate the accuracy only
while not considering the cardinality error [8], [17]–[19].
Existing sequence-level measures are generally not employed
to analyze tracking at varying accuracy levels, which would
be desirable and useful to determine the suitability of trackers
for different applications or scenarios. ID-change evaluation
measures simply incorporate the information about the total
number of ID changes or switches in the sequence [8], [17],
[18]; however it would be desirable to evaluate ID changes
relative to the track duration.

We address the drawbacks of current evaluations and pro-
pose three measures, namely the Multiple Extended-target
Tracking Error (METE), the Multiple Extended-target Lost-
Track ratio (MELT) and the Normalized ID Changes (NIDC).

III. TRACKING ERROR MEASURES

A. Multiple extended-target tracking error

The proposed overlap-based Multiple Extended-target
Tracking Error (METE) measure combines accuracy and car-
dinality errors in a parameter-independent manner. The use of
spatial overlap information in METE eliminates the need to
include the OSPA parameters (Eq. 7), namely the penalty for
the estimated states located far away from any of the ground-
truth states (p) and the cut-off parameter defining the upper
bound (c).

The accuracy error, Ak, represents the extent of the mis-
match between estimated and ground-truth states at frame k
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Fig. 3. Unbounded nature of MODA. (a) Sample frame from ETH
Bahnhof [31] (six targets). Ground truth and tracker’s estimates are shown
as magenta and cyan bounding boxes, respectively. The estimated bounding
boxes are perfectly overlapping with corresponding ground-truth bounding
boxes. By gradually increasing false positives (placed at the bottom of the
frame) from the perfectly overlapping scenario, we compute the corresponding
MODA and METE values as shown in (b). MODA continues decreasing
without lower bound (Eq. 16), whereas METE ∈ [0, 1].

and is defined as

Ak = min
π∈Πmax(vk,uk)

min(vk,uk)∑
i=1

(
1−O(Āk,i, Ak,π(i))

)
, (19)

where O(Āk,i, Ak,π(i)) =
|Āk,i∩Ak,π(i)|
|Āk,i∪Ak,π(i)|

computes the
amount of spatial overlap between Āk,i and Ak,π(i); and
O(·) ∈ [0, 1] [7], like in Eq. 15. Without loss of gener-
ality, we consider here Āk,i and Ak,π(i) to be bounding
boxes. Πmax(vk,uk) is the set of permutations, each containing
min(vk, uk) elements, drawn from {1, 2, . . . ,max(vk, uk)}.
The permutation minimizing the summation term in Eq. 19
establishes the association between estimated and ground-truth
states and contributes to the computation of the accuracy error
at frame k. This minimization is performed by the Hungarian
algorithm [27]. Ak ∈ [0, uk = vk] when uk = vk; Ak ∈ [0, vk]
when uk > vk (i.e. the association is performed only for the vk
terms); and Ak ∈ [0, uk] when uk < vk (i.e. the association is
performed only for the uk terms). For the cases when uk > vk
and uk < vk, Ak does not take into account the discrepancy
between uk and vk (i.e. the unassociated targets), and the
accuracy error is in fact computed for the associated pairs
only. This justifies the computation of the cardinality error, Ck,
namely the discrepancy in estimating the number of targets:

Ck = |uk − vk|. (20)

We combine Ck with Ak to account for the unassociated
targets in the evaluation procedure (in OSPA [16], [29]) and to
provide a single-score performance evaluation at frame level.
METE is therefore computed as:

METEk =
Ak + Ck

max(vk, uk)
, (21)

METEk ∈ [0, 1]: the lower METEk, the better the tracking
result. We explain below the bounds of the measure, where
METEk = 0 for the best tracking case and METEk = 1 for
the worst tracking case.
Best tracking case: Ak = 0: O(·) = 1 for all the associated
pairs (Eq. 19), and Ck = 0 since uk = vk (Eq. 20). This
implies METEk = 0, using Eq. 21.

TABLE I
COMPARISON OF MULTI-TARGET TRACKING EVALUATION MEASURES.

KEY: PI: PARAMETER INDEPENDENCE; SE: SIZE-CHANGE EVALUATION;
APS: ASSIGNMENT PROBLEM SOLUTION; P: POINT-BASED; R:

REGION-BASED; F: FRAME-LEVEL MEASURE; S: SEQUENCE-LEVEL
MEASURE; AE: ACCURACY ERROR; CE: CARDINALITY ERROR; PROP.:
PROPOSED; T̂ Pm : T̂ P MATCHES; F̂Pm : F̂P MATCHES; F̂Nm : F̂N

MATCHES.

Measure Ref. PI SE APS Type AE CE
OSPA [16] P F X X

Wp(·) [25] X P F X

OTE [17] X P S X
TRDR [17] X P F X
FAR [17] X P F X
TDR [17] X P S X
TF [17] X P S

T̂ Pm [19] R S X

F̂Pm [19] R S X

F̂Nm [19] R S X

CDT [18] X R S X
FAT [18] X R S X
TDF [18] X R S X
IDC [18] X R S
MODA [8] X R F X X
N-MODA [8] X R S X X
MOTA [8] X R S X X
MOTP [8] X R S X

METE Prop. X X R F X X
MELT Prop. X X R S X
NIDC Prop. X X R S

Worst tracking case: Ak has its maximum value, i.e. Ak =
uk = vk when uk = vk, Ak = vk when uk > vk (the
association is performed only for the vk terms) and Ak = uk
when uk < vk (the association is performed only for the uk
terms). Thus the numerator of Eq. 21 becomesAk+Ck = vk =
uk : uk = vk meaning Ck = 0; Ak+Ck = vk+|uk−vk| = uk :
uk > vk; Ak+Ck = uk+|uk−vk| = vk : uk < vk. Therefore,
Ak + Ck = max(vk, uk), which implies METEk = 1, using
Eq. 21. The other tracking cases lie within the two bounds of
METE as shown in Fig. 3.

As the same METE values for two trackers may be caused
by different accuracy and cardinality error combinations, it
may be useful to analyze these errors separately in order
to determine their individual influence in the estimation of
METE. To this end, we use two error rates, the Accuracy
Error Rate (AER):

AER =
1

K

K∑
k=1

Ak (22)

and the Cardinality Error Rate (CER):

CER =
1

K

K∑
k=1

Ck. (23)

Unlike OSPA, METE evaluates changes in the size of
extended targets; and unlike MODA, METE is numerically
bounded between 0 and 1 (Fig. 3) and parameter-independent.
Indeed, the parameter dependence of MODA may not always
enable it to distinguish different tracking results (Fig. 4).
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MODA = -1.33 MODA = -1.33 MODA = -1.33
METE = 0.81 METE = 0.88 METE = 0.94

(a) (b) (c)

Fig. 4. Example of limitations of Multiple Object Detection Accuracy
(MODA) [8]: although clearly different, the three cases are not distinguished
by MODA [4]. Ground-truth and estimated boxes are shown as dotted and
solid lines, respectively. The proposed measure METE can instead distinguish
the three cases.

B. Multiple extended-target lost-track ratio

The proposed Multiple Extended-target Lost-Track ratio
(MELT) evaluates tracking accuracy across the sequence in
a parameter-independent manner and enables analysis at dif-
ferent levels of accuracy. Given X̄ and X , the association is
first performed at each frame based on the minimization of the
cost (1−O(·)) computed for all pairs of estimated and ground-
truth targets. Similarly to Eq. 19, the minimization process
uses the Hungarian algorithm. The procedure yields a unique
assignment at frame level, whereas at track level a ground-
truth track may be associated with more than one estimated
track due to fragmentations and/or ID changes.

We evaluate accuracy at track level by computing the lost-
track ratio (λτi ) for each associated pair of ground-truth track
i and estimated track(s) as follows [7]:

λτi =
Nτ
i

Ni
, (24)

where Nτ
i is the number of frames with spatial overlap

O(·) ≤ τ : τ ∈ R(0,1] between the associated pair
and Ni is the total number of frames in the ground-truth track
i. λτi ∈ [0, 1]; the lower λτi , the better the performance. We
compute the lost-track ratio for a range of a finite number of
τ values and obtain λi(τ) = {λτi }τ∈R(0,1]

such that the total
number of sampled τ values is Sτ (required for numerical
approximation). We compute λi(τ) for all V ground-truth
tracks to generate the matrix Λ:

Λ = [λτi ]V×Sτ , (25)

where V and Sτ are the number of rows and columns of
the matrix, respectively. We quantify tracking performance
by defining the Multiple Extended-target Lost-Track ratio
(MELTτ ):

MELTτ =
1

V

V∑
i=1

λτi , (26)

which provides tracking performance at τ s.t. MELTτ ∈ [0, 1].
The lower MELTτ , the better the performance. In order
to enable the analysis of tracking performance at different
accuracy levels, we compute MELTτ for different τ values
(Fig. 5(c), 5(d)). While the computation of MELTτ may
be useful from an application viewpoint, the performance
comparison among trackers can be facilitated by providing the
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Fig. 5. The probability density function Hτ for a variation of τ values.
(a) Ideal tracking result: the lost-track ratio is zero for all tracks at all the
values of τ ; hence, MELT = 0. (b) Worst tracking result: the lost-track
ratio is 1 for all tracks at all values of τ ; hence, MELT = 1. (c-d) MELT
and MOTP of the Conditional Random Field based tracker (CRFBT) [6]
and the Dynamic Programming-Non-Maxima Suppression based tracker (DP-
NMS) [32] on ETH Sunnyday [31]; (c) CRFBT: MELT=0.39, MOTP=0.75;
(d) DP-NMS: MELT=0.56, MOTP=0.77.

single-score average tracking performance which is generated
as

MELT =
1

Sτ

∑
τ∈R(0,1]

MELTτ . (27)

The performance of a tracker at a particular accuracy
level, τ , can be presented by plotting the probability density
function, Hτ , of the corresponding lost-track-ratio values (i.e.
the values in the column τ of the Λ-matrix (Eq. 25)). Each
sample of Hτ represents the percentage of tracks with a
particular lost-track-ratio (bin) at a specific value of τ . Bins
are the equal-width intervals created by dividing the range of
λτi , where λτi ∈ [0, 1]. Fig. 5 shows examples of Hτ plotted
while varying the τ values. The higher the concentration of λτi
values towards bin zero, the better the corresponding tracking
performance at τ . Fig. 5(a) shows an ideal tracking result with
zero lost-track ratio value for all X̄i at all τ . Similarly, Fig. 5(b)
is the worst tracking result: the lost-track ratio is 1 for all X̄i
at all τ . Figures 5(c), 5(d) show the results of the Conditional
Random Field based tracker (CRFBT) [6] and the Dynamic
Programming-Non-Maxima Suppression based tracker (DP-
NMS) [32] on ETH Sunnyday [31] using MELT and MOTP.
MELT considers CRFBT to be better than DP-NMS and
this can be seen from the highest concentration of values of
CRFBT in the bins towards zero in Fig. 5(c). Consequently,
MELTτ values of CRFBT and DP-NMS computed for the
variation of τ (Fig. 6(c)) show that CRFBT outperforms DP-
NMS. The values of MELTτ of CRFBT are lower for all τ
than those of DP-NMS, meaning lower lost-track-ratio values
and better tracking accuracy. On the other hand, MOTP ranks
the performance of two trackers differently (i.e. opposite)
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Fig. 6. Evaluation of trackers’ results at varying levels of accuracy (τ ) using
MELTτ on all sequences. (a) MELTτ of trackers on TownCentre sequence.
‘H’ and ‘P’ in the legend indicate the use of a tracker for head or person
tracking, respectively; (b) MELTτ of trackers on ETH Bahnhof sequence; (c)
MELTτ of trackers on ETH Sunnyday; and (d) MELTτ of trackers on iLids
Easy sequence.

because it does not take into account the overlap values of
the estimated and ground-truth track pairs that are smaller than
τo, thereby not including the complete tracking accuracy in the
assessment. MELT provides a holistic performance assessment
taking into account all of the tracking information.

MELT also summarizes tracking performance at different
accuracy levels and provides an insight for analysis. For
example, consider the MELTτ plots of DP-NMS and the multi-
target track-before-detect (MT-TBD) tracker [33] shown in
Fig. 6(c). MELTτ shows that for τ < 0.72 (approx.), MT-TBD
outperforms DP-NMS, after which DP-NMS outperforms MT-
TBD. This analysis can be useful in selecting between these
two trackers for an application that requires tracking with
average overlap (accuracy) of e.g. 80%: DP-NMS would be a
more suitable choice than MT-TBD.

C. Normalized ID changes

The proposed Normalized ID Changes (NIDC) measure
evaluates the ID changes taking into account the track duration
in which they occur. In the case of a comparison of trackers
producing tracks of different lengths, the normalization of ID
changes is preferable to simply counting the ID changes. Such
quantification emphasizes the long-term tracking ability with
unique IDs of trackers. Moreover, since the score is normalized
it can be more useful than the number of ID changes to
compare trackers across different datasets. Unlike IDC [18]
and MOTA [8], NIDC is parameter independent since its
assignment solution used for detecting ID changes is based
on that used in Sec. III-A (Eq. 19).

Let VIDC be the number of ground-truth tracks with at least
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NIDC1 = 0.12, TF1 = 3 NIDC1 = 0.20, TF1 = 5

NIDC2 = 0.06, TF2 = 3 NIDC2 = 0.02, TF2 = 1

NIDC = 0.09, IDC = 6 NIDC = 0.11, IDC = 6

(a) (b)

Fig. 7. Comparison of the proposed Normalized ID Changes (NIDC) measure
with Track Fragmentation (TF) [17] and ID Changes (IDC) [18]. (a) and (b)
present results of two different trackers in terms of ID changes on the same
sequence. Each example shows two ground-truth tracks; ID=1: red ground-
truth track; ID=2: blue ground-truth track. ID changes are shown as black
dots. (a) The length of the red track (IDCmax1 = 25) is shorter than that
of the blue track ( IDCmax2 = 50) and |IDC1| = |IDC2| = 3. Thus,
NIDC1 = 0.12 and NIDC2 = 0.06 penalize the red track (shorter) more for
the occurrence of the same number of ID changes as the blue track. However,
TF1 = TF2 = 3 considers both the cases to be the same. (b) NIDC and TF
can distinguish the different ID changes of the two tracks. The IDC measure
considers (a) and (b) as the same cases since IDC = 6 for both, whereas
NIDC can distinguish (a) and (b).

one ID change and

NIDCi =
|IDCi|
IDCmaxi

(28)

be the NIDC value for ground-truth track i and IDCmaxi the
maximum number of ID changes that can occur for ground-
truth track i (i.e. the length of track i). NIDCi includes
a contribution of ID changes for track i that is scaled by
IDCmaxi , which is proportional to the duration of track i. This
penalizes the ID changes by the length of the track in the
estimation of NIDC, instead of simply relying on counting
ID changes [8], [17], [18]. NIDC quantifies the number of
ID changes corresponding to all ground-truth tracks of the
sequence:

NIDC =
1

VIDC

V∑
i=1

NIDCi, (29)

where NIDC ∈ [0, 1]. The lower NIDC, the better the perfor-
mance in terms of ID maintenance.

Figure 7 shows two examples that compare NIDC with TF
[17] and IDC [18]. The red ground-truth track (ID=1) and
the blue ground-truth track (ID=2) shown in Fig. 7(a) have
different lengths (IDCmax1 = 25 and IDCmax2 = 50) but have
the same number of ID changes (|IDC1| = |IDC2| = 3).
NIDC1 = 0.12 is larger than NIDC2 = 0.06 since the measure
penalizes the red track (shorter length) for the occurrence of
the same number of ID changes. Unlike NIDC, TF does not
distinguish these two cases as TF1 = 3 and TF2 = 3, as it
does not consider track length. Both NIDC and TF are able to
distinguish ID changes of two tracks in Fig. 7(b) as is shown in
their listed values. Moreover, the ID changes of two different
trackers are shown for the same sequence in Fig. 7(a) and
Fig. 7(b), respectively. While IDC does not distinguish the
results of the two trackers as IDC = 6 for both of them,
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NIDC differentiates between them (NIDC = 0.09 for (a) and
NIDC = 0.11 for (b)).

IV. EXPERIMENTAL VALIDATION AND ANALYSIS

We validate the effectiveness of the proposed measures
by comparing them with state-of-the-art measures and by
evaluating the performance of recently proposed trackers on
real-world publicly-available datasets.

A. Experimental setup

We use four real-world datasets, namely TownCenter [4],
ETH Bahnhof [31], ETH Sunnyday [31] and iLids Easy [20].
The datasets contain a high density of targets with occlusions.
TownCentre, recorded from an overhead static camera, is
composed of 4491 frames of size 1920×1080 pixels recorded
at 25 fps. The ground truth has 231 head/person-tracks with an
average of 16 people per frame. ETH Bahnhof and Sunnyday,
recorded from a human-height moving camera, are composed
of 999 and 354 frames, respectively, with a frame size of
640 × 480 recorded at 14 fps. The ground truth of Bahnhof
has 95 person-tracks with an average of eight people per
frame, while that of Sunnyday has 30 person-tracks with an
average of five people per frame. iLids Easy is composed of
5220 frames of size 720×576 pixels recorded at Westminster
subway station (London, UK) at 25 fps. The ground truth has
17 person-tracks with an average of 1.9 people per frame.

We use four state-of-the-art trackers in the experimental
validation including a combination of the Kanade-Lucas-
Tomasi tracker [34] with Markov-Chain Monte-Carlo Data
Association (MCMCDA) algorithm [4], a data association
algorithm with the online learned Conditional Random Field
Based Tracker (CRFBT) [6], a Multi-Target Track-Before-
Detect (MT-TBD) with a post-processing stage [33], and
the Dynamic Programming Non-Maxima Suppression based
tracker (DP-NMS) [32]. Tracking includes head and person
(full-body) tracks from both static and moving cameras. DP-
NMS is tested on TownCentre, ETH Bahnhof and Sunnyday,
and iLids Easy sequences for person tracking. MT-TBD is
used for head tracking on the TownCentre sequence and for
person tracking on the ETH Bahnhof and Sunnyday, and
iLids Easy sequences. MCMCDA is used for head tracking
on TownCentre and for person tracking on TownCentre and
iLids Easy sequences. CRFBT is tested on ETH Bahnhof and
Sunnyday sequences for person tracking. Table II summarizes
the datasets and lists the trackers used on the respective
sequences. The parameter values of all trackers are those used
in the original papers. For the computation of N-MODA, we
use τo = 0.50 in the case of person tracking and τo = 0.25 in
the case of head tracking, as done in [4].

B. Comparison of measures

We compare the proposed METE, MELT and NIDC
measures with relevant state-of-the-art measures, namely N-
MODA, MOTP and IDC. Table III shows the scores of all
measures obtained for all trackers.

The evaluation results using METE and N-MODA on Town-
Centre with head tracking (TownCentre-H) and with person

TABLE II
SUMMARY OF THE DATASETS USED. KEY: FS: FRAME SIZE; NF: NUMBER
OF FRAMES; MC: MOVING CAMERA; NT: NUMBER OF TRACKS; ANPPF:
AVERAGE NUMBER OF PEOPLE PER FRAME; TM: TRACKING METHODS
TESTED; C: CROWDNESS; O: OCCLUSIONS; VS: VARIABLE SPEED; IC:

ILLUMINATION CHANGES; SC: SCALE CHANGES.

Dataset FS NF Challenges MC NT ANPPF TM
TownCentre 1920× 1080 4491 C,O,VS,SC 231 16 [4], [32], [33]
ETH Bahnhof 640× 480 999 C,O,IC,SC X 95 8 [6], [32], [33]
ETH Sunnyday 640× 480 354 C,O,IC,SC X 30 5 [6], [32], [33]
iLids Easy 720× 576 5220 O,VS,IC,SC 17 1.9 [4], [32], [33]

tracking (TownCentre-P), and on Sunnyday show an agree-
ment between both measures in terms of the relative ranking
of trackers. However, there are disagreements on Bahnhof and
iLids Easy. On Bahnhof, N-MODA of DP-NMS and MT-TBD
are the same. This is because the normalization in N-MODA
formulation (Eq. 17) is with respect to the number of false
positives and false negatives of tracking only and it does not
consider the number of true positives. Since the total number
of false positives and false negatives for DP-NMS (3525) and
MT-TBD (3514) is comparable, their N-MODA is comparable.
Interestingly, the number of true positives for DP-NMS and
MT-TBD are 5030 and 6222, respectively. On the other hand,
METE ranks MT-TBD higher than DP-NMS since it implicitly
takes into account true positives, false positives and false
negatives. On iLids Easy, N-MODA ranks MT-TBD as the
best tracker, which is not consistent with METE that ranks
MCMCDA as the best. N-MODA shows the best performance
for MT-TBD because the total number of its false positives
and false negatives (3639) is smaller than that of DP-NMS
(3843) and MCMCDA (3698). METE, as discussed above,
ranks their performance effectively by considering also true
positives (in addition to false positives and false negatives)
that are 6632, 6705 and 7969 for DP-NMS, MT-TBD and
MCMCDA, respectively.

While MELT and MOTP agree on their relative ranking of
trackers on TownCentre-H and TownCentre-P, they disagree
on the remaining sequences (Tab. III). In the case of Bahnhof,
MOTP of MT-TBD and DP-NMS are the same, whereas
MELT ranks MT-TBD higher than DP-NMS. The MELTτ
plots also show a better performance of MT-TBD for most of
the variations of τ than DP-NMS (Fig. 6(b)). The disagreement
of MOTP is due to its dependence on the threshold value
τo. MOTP considers only the overlap values of pairs greater
than τo, which may lead to the exclusion of some tracking
information in the performance assessment. On the other hand,
MELT uses all of the tracking information in the performance
assessment to present a comprehensive performance evaluation
that can more effectively reflect the trackers’ comparison.
In the case of Sunnyday, there is a disagreement between
MELT and MOTP in selecting the best tracker, as already
discussed in Sec. III-B. In the case of iLids Easy, MOTP of
DP-NMS and MCMCDA are comparable; however, based on
their MELT scores and MELTτ plots (Fig. 6(d)), the difference
in their performance is clear. The inconsistencies of MOTP in
Sunnyday and iLids Easy are due to its parameter dependency.

NIDC and IDC agree in their relative evaluation of trackers
on TownCentre, Bahnhof and iLids Easy (Tab. III). The
effectiveness of NIDC can be noticed in the case of Sunnyday.
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TABLE III
OVERALL COMPARISON OF TRACKERS ON DIFFERENT DATASETS WITH DIFFERENT EVALUATION MEASURES. THE COLORED CELLS INDICATE THE

TRACKER’S PERFORMANCE: THE DARKER THE COLOR, THE BETTER THE PERFORMANCE. KEY: TOWNCENTRE-H: HEAD TRACKING PERFORMED ON
TOWNCENTRE SEQUENCE; TOWNCENTRE-P: PERSON TRACKING PERFORMED ON TOWNCENTRE SEQUENCE; METE: MULTIPLE EXTENDED-TARGET

TRACKING ERROR; MELT: MULTIPLE EXTENDED-TARGET LOST TRACK RATIO; NIDC: NORMALIZED ID CHANGES; AER: ACCURACY ERROR RATE;
CER: CARDINALITY ERROR RATE; MLT: MEAN LENGTH OF GROUND-TRUTH TRACKS HAVING ID CHANGE(S); N-MODA: NORMALIZED MULTIPLE
OBJECT DETECTION ACCURACY; MOTP: MULTIPLE OBJECT TRACKING PRECISION; IDC: ID CHANGES; µ: MEAN VALUE OVER THE SEQUENCE; σ:
STANDARD DEVIATION OF VALUES OVER THE SEQUENCE IN THE CASE OF METE, AND STANDARD DEVIATION OF VALUES OF ACCURACY ERROR (A)

AND CARDINALITY ERROR (C) OVER THE SEQUENCE FOR AER AND CER, RESPECTIVELY.

Tracker Dataset METE µ(σ) MELT NIDC AER (σ) CER (σ) N-MODA MOTP IDC MLT
MT-TBD [33] 0.53 (0.08) 0.54 0.031 6.82 (2.54) 2.14 (1.92) 0.55 0.64 1798 320.00
MCMCDA [4] TownCentre-H 0.62 (0.07) 0.65 0.038 8.48 (2.74) 1.82 (1.62) 0.46 0.51 1913 330.12
DP-NMS [32] TownCentre-P 0.48 (0.08) 0.53 0.043 5.06 (1.52) 2.67 (2.02) 0.58 0.71 2637 321.61
MCMCDA [4] 0.33 (0.09) 0.37 0.030 3.64 (1.54) 1.81 (1.62) 0.62 0.80 1519 336.44
DP-NMS [32]

ETH Bahnhof
0.53 (0.13) 0.57 0.039 1.45 (0.69) 3.07 (1.85) 0.58 0.75 229 109.92

MT-TBD [33] 0.44 (0.12) 0.46 0.050 2.42 (1.19) 1.56 (1.34) 0.58 0.75 307 103.51
CRFBT [6] 0.39 (0.12) 0.42 0.035 1.99 (0.86) 1.49 (1.26) 0.68 0.77 158 124.91
DP-NMS [32] 0.44 (0.11) 0.56 0.042 1.16 (0.55) 1.34 (0.93) 0.66 0.77 43 68.68
MT-TBD [33] 0.47 (0.11) 0.46 0.041 1.60 (0.57) 1.09 (0.84) 0.61 0.73 56 91.50
CRFBT [6]

ETH Sunnyday
0.46 (0.12) 0.39 0.028 1.46 (0.52) 1.06 (0.78) 0.63 0.75 31 82.20

DP-NMS [32]
iLids Easy

0.40 (0.26) 0.52 0.011 0.40 (0.36) 0.65 (0.86) 0.60 0.74 104 632.87
MT-TBD [33] 0.53 (0.22) 0.54 0.007 0.50 (0.36) 0.96 (1.10) 0.63 0.70 54 632.87
MCMCDA [4] 0.36 (0.26) 0.43 0.029 0.51 (0.45) 0.51 (0.76) 0.62 0.75 227 605.06

IDC considers the performance of DP-NMS to be better than
MT-TBD. NIDC shows a slightly better performance for MT-
TBD than DP-NMS despite the fact that the former has
produced more ID changes than the latter. This is because
NIDC provides ID evaluation while considering also the track
length. Since MLT (mean length of ground-truth tracks having
ID change(s)) of the MT-TBD is much higher than DP-NMS,
NIDC penalizes less the ID changes of the former.

To conclude, unlike METE, the dependence of MODA
on the preset overlap threshold limits its ability to clearly
distinguish different tracking results (Fig. 8(a-c)); and unlike
MELT, the threshold dependency of MOTP may result in an
inaccurate evaluation of tracking performance (Fig. 9).

C. Evaluation of trackers

We now discuss the effectiveness of the proposed measures
by highlighting strengths and weaknesses of selected trackers.

On TownCentre-H, MT-TBD outperforms MCMCDA using
mean METE, MELT, NIDC and AER (see r.1 1, 2 in Tab. III),
which is also confirmed in the MELTτ plots (Fig. 6(a)). MT-
TBD has a better NIDC than MCMCDA because of its better
ID management mechanism, which involves minimizing the
mixing of target particles in the Bayesian state estimation [33].
Interestingly, CER differs from the remaining measures and
shows better performance for MCMCDA compared to MT-
TBD. The higher CER of MT-TBD is due to a greater number
of tracking failures or missed targets. Since AER is lower for
MT-TBD, this points to fewer occurrences of tracking failures
than missed targets.

On TownCentre-P, MCMCDA outperforms DP-NMS based
on mean METE, MELT, NIDC, AER and CER (see r. 3, 4 in
Tab. III). It is also interesting to highlight the clear improve-
ment in the evaluation results of MCMCDA using the pro-
posed measures on TownCentre-P compared to TownCentre-

1’r’ refers to the row number in Tab. III not considering the row with titles.

H, which is inline with the results of the original paper [4].

On Bahnhof, mean METE, MELT, NIDC and CER rank
CRFBT as the best tracker compared to DP-NMS and MT-
TBD (see r. 5, 6, 7 in Tab. III). This is also visible in the
MELTτ plots (Fig. 6(b)). The reason for the best NIDC of
CRFBT is its capability in addressing ID changes using motion
and appearance ‘affinities’ [6], enabling it to distinguish and
separate nearby targets. There is an inconsistency in the case of
AER that ranks CRFBT as second-best tracker after DP-NMS.
Furthermore, the CER of DP-NMS is almost twice that of MT-
TBD and CRFBT. This is due to the limited capability of DP-
NMS, unlike MT-TBD and CRFBT, to link fragmented tracks
that increases the cardinality error. The fragmentations in the
case of DP-NMS are caused by a worse handling of long-term
occlusions compared to MT-TBD and CRFBT (Fig. 10).

On Sunnyday, we tested the same trackers (DP-NMS, MT-
TBD and CRFBT) as used on Bahnhof. Some inconsisten-
cies can be noticed in the evaluation results on Sunnyday
compared to those on Bahnhof. Firstly, unlike on Bahnhof,
the evaluation based on mean METE on Sunnyday shows
a better performance of DP-NMS compared to MT-TBD
and CRFBT (see r. 8, 9, 10 in Tab. III). This is probably
because the person detector [35] used with DP-NMS can better
deal with the higher scene brightness in Sunnyday than the
detector [36] used with MT-TBD and CRFBT, which results
in the improved tracking performance of DP-NMS. Secondly,
unlike on Bahnhof, NIDC of MT-TBD is better than DP-NMS
on Sunnyday despite the fact that IDC of the former is higher
than the latter in both sequences due to the reason discussed
in Sec. IV-B.

On iLids Easy, the evaluation of trackers using mean METE
and MELT shows the superior performance of MCMCDA
compared to DP-NMS and MT-TBD (see r. 11, 12, 13 in
Tab. III). The superior mean METE and MELT of MCMCDA
over DP-NMS is consistent with their mean METE and
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Fig. 8. Evaluation of the results of CRFBT on Bahnhof sequence using
METE and MODA. Subscript k is removed from the variables for simplicity
in the notation. Ground truth and tracker’s estimates are shown as magenta and
green bounding boxes, respectively. Results are ordered in terms of ascending
METE values.

MELT on TownCentre-P. Moreover, the analysis of MELTτ
plots (Fig. 6(d)) provides an interesting insight about the
performance of MT-TBD and DP-NMS, revealing that MELTτ
of MT-TBD is better than DP-NMS for τ < 0.5 and the
reverse is true thereafter. This suggests that DP-NMS is a more
suitable choice for tracking with higher accuracy and MT-TBD
should be preferred with lower accuracy since its lost-track-
ratio values are smaller at lower τ . Additionally, while CER
of DP-NMS is the highest on the rest of the sequences, MT-
TBD has the highest CER on iLids Easy. Furthermore, the
best NIDC of MT-TBD on iLids Easy, as discussed earlier, is
due to its better ID management ability. Interestingly, although
MLT of MT-TBD and DP-NMS is the same2 (see r. 11, 12
in Tab. III), the higher IDC of the latter leads to its inferior
NIDC.

Table III also presents the variation in the performance

2The same MLT is because ID change(s) for both trackers have occurred
in the same tracks.
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Fig. 9. Limitation of Multiple Object Tracking Precision (MOTP) [8]. Cyan
tracker: MOTP=0.56, MELT=0.45; Blue tracker: MOTP=0.56, MELT=0.64.
Unlike the proposed measure MELT, MOTP does not distinguish two tracking
results due to its parameter dependence. Magenta: ground truth.
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Fig. 10. Example of target occlusion in Bahnhof sequence. DP-NMS (green
bounding box) loses the target due to occlusion in (b); however, the other
trackers successfully handle it. Yellow: MT-TBD; cyan: CRFBT; magenta:
ground truth.

of the trackers in terms of standard deviation (σ) values for
different measures. In the case of METE, σ is comparable
on all sequences. As for AER, while MCMCDA has the
highest σ on TownCentre and iLids Easy (hence, the highest
performance variation over time), MT-TBD has the highest
performance variation over time on Bahnhof and Sunnyday.
As for CER, the trend of the σ values of trackers on each
dataset is the same as the trend of the corresponding CER
values.

Figure 8 shows the evaluation results of CRFBT on key
frames of Bahnhof using METE and MODA. All the targets
are tracked in the results shown in Fig. 8(a), (b) and (c).
The value of METE increases from (a) to (c) because of the
decrease in the amount of overlap (lower accuracy) among
the associated pairs of estimated and ground-truth bounding
boxes. The cases shown in Fig. 8(d) and (e) have C = 1;
however, METE in (e) is higher than that in (d). In Fig. 8(f),
79% of targets are correctly tracked (11 out of 14), hence its
METE value (0.400) is higher than that in (e) where 90%
of targets are correctly tracked with a METE value of 0.373.
In Fig. 8(g), the percentage of tracked targets reduces further
to 73%, hence its METE value is higher than (f). Although
the percentage of tracked targets in the case of Fig. 8(h)
(75%) is higher than (g), METE is slightly higher in the
case of the former because of a more inaccurate overlap



NAWAZ et al.: MEASURES OF EFFECTIVE VIDEO TRACKING 11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MT−TBD − ETH Bahnhof − Pruning threshold (!)

"

M
EL

T "

 

 

! = 5
! = 10
! = 15
! = 20
! = 25
! = 30
! = 35
! = 40

Fig. 11. Effect of the variation in performance of MT-TBD using MELTτ
on Bahnhof by varying the threshold value (γ) used to prune spurious tracks
at the track-linking stage.

in the case of (h). Likewise, METE for the cases shown
in Fig. 8(i-l) is influenced by the corresponding accuracy
and cardinality errors. MODA does not distinguish among
the cases in Fig. 8(a-c) (MODA=1) despite the difference
in their respective overlaps. This insensitivity of MODA is
due to the threshold (τo) used to determine false negatives
and false positives (Eq. 18). Another point to highlight is the
disagreement between METE and MODA in the cases shown
in Fig. 8(h) and (i). Unlike METE, MODA considers the case
in (i) to be better than (h). This is because in the case of (h),
MODA considers 58% (7 out of 12) of estimated bounding
boxes to be correctly associated to those of the ground truth,
excluding the third and the sixth pairs (starting from the right)
that are not considered to be valid associations since their
overlap is below τo. Differently, METE, being independent of
thresholds, considers these two pairs in the evaluation of the
score and penalizes them appropriately. In the case of Fig. 8(i),
66% of the ground-truth targets are correctly associated and
there is a presence of a false positive, hence the MODA value
is higher for this case.

To summarize, MCMCDA performs better as a person
tracker than a head tracker. While DP-NMS has mostly
reported the lowest accuracy error, its cardinality error has
mostly been the highest. DP-NMS is not able to handle
occlusions. Finally, CRFBT is the best tracker based on the
evaluation of ID changes, followed by MT-TBD.

D. Performance analysis by varying the parameters of the
trackers

We vary a key parameter in MT-TBD framework (Fig. 11)
and consider DP-NMS with different methods (Fig. 12), and
analyze the variation in their performance based on MELT.

For MT-TBD, we vary γ, which defines the minimum
allowed track length [33] such that shorter estimated tracks are
pruned. In Fig. 11, MELTτ values are shown for variations of
τ with different γ values. We can notice a gradual deterioration
in performance while increasing γ because of an increase in
lost-track ratio values.

For DP-NMS, we generate tracking results on Bahnhof with
three different algorithms proposed by the authors of [32]. The
first method is DP-NMS that is used in Sec. IV-B and IV-C; the
second is based on dynamic programming (DP) but without
including the non-maximal suppression (NMS) stage in the
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Fig. 12. Tracking results obtained using the three algorithms proposed in [32].
(a) Detection rate versus false positives per frame; (b) MELTτ plots.

iterative process; and the third is based on successive shortest
path (SSP) [37]. Figure 12(a) shows detection rate versus
false positives per frame (FPPF) for DP, DP-NMS and SSP
algorithms, while Fig. 12(b) shows their MELTτ plots. The
results in Fig. 12(a) show mostly a lower performance (smaller
detection rate) for SSP. This trend is also confirmed for the
MELTτ plots (Fig. 12(b)) since MELTτ of SSP is consistently
higher. This high MELTτ for SSP is expected because, as
discussed in [32], the SSP algorithm generates shorter tracks
(higher MELTτ ), while the DP-based algorithms generate
longer tracks (lower MELTτ ).

V. CONCLUSIONS

We proposed three measures (METE, MELT, NIDC) that
quantify key factors in extended multi-target tracking: accu-
racy, cardinality and ID changes. These measures are parame-
ter independent, numerically bounded and account for target-
size changes. METE provides a holistic error assessment using
an effective trade-off between accuracy and cardinality errors.
MELT enables the analysis of tracking performance at varying
accuracy levels that can facilitate the selection of trackers for
specific applications. NIDC penalizes ID changes as a function
of the length of the track in which they occur. We presented
an extensive experimental validation and comparison of these
measures with the state-of-the-art measures on recent multi-
target trackers using challenging real-world sequences.

The proposed measures are suitable for targets that are
modeled in terms of their position and 2D image-plane-
occupied area, as commonly considered in the literature [8],
[9], [15]. The proposed measures can also be applied to other
sensing modalities when a 2D target model is used. Other
target models for 2.5D and 3D tracking also exist for dif-
ferent sensing modalities [38]–[40] and future research could
investigate the extension of the proposed tracking evaluation
approaches for these higher-dimensional target models.
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